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XVI—An attempt to rectify the inaccuracy of some logarithmic formule. By
Joun Tromas Graves, of the Inner Temple, Esq. Communicated‘ by Joun
Freperick Wirriam Herscuer, Esq. V. P.

Read December 18, 1828.

T'ROM the recent researches- [Note A.] of MM. Poisson and PoiNsor on
angular section, and their discovery of error in trigonometrical formulee usually
considered complete, my attention has been drawn to analogous incorrectness
in logarithmic series. Accordingly, the end proposed in the present investiga-
tion is the exhibition in an amended form of two fundamental developments,
as the principles employed in their establishment admit of application in ex-
panding by different methods various similar functions, and tend to elucidate
other parts of the exponential theory.

Let a =y. [1]

It is proposed to exhibit correct developments ;

L. Ofyinterms of e and @5

II. Of x in terms of @ and y ;
the corresponding formule hitherto given being incomplete ; viz.*

(z1a)"
1.2...n.° " (2]
vV =12ix +1y [3]

la

1. y=1+xla...+

II. x, when y is positive, =

Some authors, for the case when y is negative, have provided for x the for-

mula . _
VE1@itD)r+l—y [4]

la
The notation above used will be adhered to, and requires to be explained.
¢ denotes 0, or any integer positive or negative, and = the ratio of the cir-
cumference of a circle to its diameter. 1 is intended to designate the tabular

* Lacroix, “ Traité du Calcul différentiel et intégral : ” Introduction, Art. 25, 27, 28, 81.
z2

j

v
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172 MR. GRAVES ON A RECTIFICATION OF THE

Neperian logarithm of a, which logarithm is a quantity assignable only in the
case when « is positive, and may then be found from the development

: 2n+1
~e{iF e e 50 1 (5]

Independently of the circumstance that neither of these formulae for y and «
provides for the case when « is negative or impossible, and that neither [3] nor
[4] provides for the case when y is impossible, their incompleteness will appear
from what follows.

That [2] is incomplete is prima facie obvious, from the known fact that
when « is a rational fraction, a” has as many values as there are units in the
denominator of # reduced to its lowest terms, whereas [2] never exhibits more
than one value.

Thus, ¢* (e being the Neperian base and 1e = 1) has two values, viz: +./¢
and —./e, whereas

1 n
R R v e (3) -

represents the value - /e only.

The imperfection of [3]-and [4] arises from the imperfection of [2], of which
[3] and [4] are reverted solutions.

Thus, as one of the values of & = —,/e,  is a Neperian logarithm of
—a/¢ but yet, if in [4] —./e be substituted for y, and e for @, the resulting

formula, viz. _
V=12i+)r+14e
le

comprises, whatever value be given to i, only imaginary quantities, among
which, of course, 1 cannot be found.'

For the purpose of developing y and « correctly, adopting the equation

f0 =cosf + 4/ — 1sinf [6]

it will be useful to possess two preliminaries ;

1st, a development of £4;

2nd, a development of f =1 4
as it will appear that upon the form of these developments depend the desired
ones of y and x. ;

(By £ ~' ¢ is to be understood, according to the notation of Mr. HerscHEL,
every such quantity g, that f ¢ = ¢).

or v—1(2i+1)r+1
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Postulates.

To obviate the necessity of interrupting the course of the argument here-
after, it may be satisfactory to enumerate the principal truths immediately
connected with our subject and not immediately evident, which will be taken
for granted in this paper. =

For their support, the authority of Dr. LARDNER’s Tngonometry, Part 111.
Sections 1 and 2, may be referred to.

EvuLer’s development of f 4, or

f0=1+ & =10.. .+§.1/___._)_.... [7]
De Moivre’s theorem, or

f(z0) = a value of (f6)" : 8]

£ o mgin 0 | [o]
De Moivre’s theorem as extended by M. Poinsor, or

f{z(2ir +0)} = (f5)" [10]

£(0+ k) =f£0.fk [11]

Subsidiary division.

1st, To possess a development of f 4.
The development of EvLEr [7] is accurate and sufficient.

~ 2nd, It remains to obtain a development of f = 4.
Differentiating [6] we obtain

dfé —— —_— —
a7 = ¥ —=1(cosd + & —1sinb) or ¥ —1f0 |12]

Substituting in [12] f =" ¢ for ¢, we obtain

-1 . :
dff - b = vZife™ ; or since ff“‘o.:a; ‘“l = 4 =10,
af~'e afto

Hence we find
d f —1lg

=w=19)~" ~ [13]

. -1
Itis evident by [13], that when ¢ becomes = 0, _‘.i_%-—- becomes infinite, and
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consequently it is impossible to develop f~'¢ according to the ascending
integral powers of 4. Let us then proceed to develop according to the
ascending powers of 1 — dfc; (c being a constant, and introduced—be it
remarked in advance—on account of the power it possesses, if properly chosen,
of rendering the intended development of f ~! 4 convergent.)

To effect this purpose, let

1—bfc=w [14]
Hence
6= (1 —w)(fc)~1; or since, by [8], (fc) l=f—¢; d=(1—aw)f—c:
Accordingly, after substituting in [18] (1 — &) f— c for 4, and therefore
— wf— cdwfor dd, we find

{(ld:w)f—c} =v=1ia — )1

Hence, continuing to derive the successive differential coefficients, we obtain

d"fTH(1 —w)f—c}

n

do

=4 =1.1.2...0—=1.(1 — )"

Hence, evidently,

( {(l—w)f—e}) Wt . [15]

"t 1= =}

(by the notation ( d s ) being designated the value which
w

d'f7H{(1 —w)f =}
do"

Also, by [9], (f—l{(l—w)f—-c}) orf~ f—c=2ir—c (16]
But, by MacLaurIN’s theorem,

acquires, when » = 0.)

(d”f“ {(1 —w)f— h
-1 =1 do” .
{Q=w)f—c] = (f {1 —w)f—c})... + 12 7 ~w
Substituting for the successive terms of this equation their values derived
from [16] and [15], we obtain

£~ {(l—w)f—c}—?ur—c+ V—l(w --) (17]




INACCURACY OF SOME LOGARITHMIC FORMULZ. 175

Replacing, in [17], w by 1 — dfc (see [14] ), and therefore (l —w)f—chyd,
we obtain finally the required development ; viz.
Fl = 2in—c 4 v = 1{(1 —0fc)un. + (_1:7"50_)2 } [NoteB] [18]

Having advanced thus far, it will now be easy to fulfil our original intention.

General division.
1. To develop y in terms of @ and .
Let a=fo , [19]
Then by [10], " or (£0)° =f{x (2i# + 0}
But by [9], 2ir40=Ff""foor (see [191) f ' a

Hence a’, or (see [1]) y =f(@f™"a) [Note C.] [20]
Hence, expanding f (z f~" @) by formula [7], we obtain,
_ 7,1 (Vfimf—l a)" 21

y=1++—12f "a...+ T [ ]

II. To develop x in terms of @ and y.
-1

Solving [20], we obtain, = :‘___1_9. [Note D.] [22]

. a

Hence, developing by formula [18],
2iw—c¢ + 4/~:i{(1 —yfc)...+~7lz—(l —yfc)"...} ’
= : - } [23]

2im —c + V:—I{(l—afc) ...+—717(1-afc)n...

(¢ and c are dotted underneath, to show that when rendered determinate, their

individual values may differ from those of ¢ and c¢.)
[21] and [23] may now be compared with [2], [3], and [4].

Remarks on the application of the preceding theory.

From the foregoing principles many collateral deductions may be inferred.
For instance, they present a solution of difficulties and illustrate peculiarities
appertaining to the theory of the logarithms of negative quantities. Directed
to geometry, they advance into an almost uninvestigated part of analysis, by
conducing to trace the form and evolve the properties of curves (if figures,
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consisting generally of discontinuous points, can accurately be called curves),
whose equations involve exponential functions. By their means also, various
differential and other formulze usually exhibited in logarithmic treatises may be
rendered complete. An extended pursuit of these objects would exceed the
limits of the present design; but to explain briefly the mode of procedure

employed in application of the preceding general results, an Appendix is sub-
joined, containing a few examples.

APPENDIX,

§ 1. The constant ¢ might appear to be needlessly introduced, if its necessity to
insure the convergence (and universal accuracy [Note E.]) of the
series [18] were not plain from what follows.

Differentiating » terms of the series [18] there results,

_vi‘ifc{l 4 (1= 0fc)uun + (1 — ofc)"'"l}de
which, as is evident on multiplying by 1 — (1 — dfc),

=— ¥ 1fc {1 eeffc))}da or (/=10 {l -1 —Ofc)n}da [24]

This expression, if the series [18] be convergent, or, carried to infinity,
be numerically equivalent to f~' 4, ought, as » is increased without limit, to
approach indefinitely to d £~ 6, or (see [13]) (\/— 16)""' d¢; but, on referring
to [24], it is obvious that such can be the case only where c is so assumed,
that, » being supposed to increase without limit, (1 — ¢f¢)" shall approach in-
definitely to 0.

Were ¢ neglected, or, in other words, taken = 0, and therefore (see [6])
fc=1, 0 would not always necessarily lie between such limits that (1 — ¢)”
should possess this property; but a quantity fc is, in any case, supposable,
which will insure for (1 — 0fc)” the required essential, whatever, at the time,
be the value of 4.

§ 2. If 4" have among its values two quantities differing only in sign, » must

be a rational fraction with, in its lowest terms, an even denomi-
nator. [Note F.]

By [20] all the values of o’ are expressed by f(2f'a). Any determined
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value must, therefore, be expressible by f (2 £ a), where ! @ is a determined

value of f~*a. Moreover, by [9], the expressions f~' e, and 2i# + £~ q, are
co-extensive. Now " having two values which differ only in sign, let one of

them = f(zf~"a); then: (since f# = — 1) the other will = f=.f(#f ' a) or
(see [11]) f (7 + @ £=' @). The supposition is that f (7 + 21~ a) = one of the
values of & orf{z(2i7+1"'a)}. Hence, by [9], one of the quantities

2i7 4 7+ o f~' a must = one of the quantities # (277 4+ £~ a).

e 2041 .
Hence # must = one of the quantities —-——, a formula comprising all
rational fractions, which, in their lowest terms, have even denominators.

§3. f~1(0h) =10+ 'k [Note G.].

By [11], f(f~ 0+ £~ h) =££71 0.0 hor 0 k.
Hence, {1 0h = 04+t h Q.E.D.

§ 4. On the Neperian logarithms of positive numbers.

Developing by [7], it appears that f —/— 1 =1+1... +j—2—1—',; =e
the Neperian base. o

Hence, by [9], f'e=2iz—, /—1.

Hence, by [22], the Neperian logarithms of %2 are expressed by

£
Q_iw—v‘_l [25]
-1 2K? _ 2 -
Now,by§3, o=+ K
1 2 -1 2K2 -1 2
Hence K= et e

And, K® being positive, (in the formulee of this paper capital letters will be

.y 2K2 1-— K2 2 1 — K2
used to denote real quantities) 1 — 5 TR TR and 1 — IR T

must evidently both lie between 1 and — 1.
Hence it is plain that (1 — ;2es) and (1 — —2rs) will both approach
TK T K pproac
indefinitely to 0, as n increases without limit.
MDCCCXXIX. 2a
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Hence, by § 1, constants may be dispensed with in the developments ac-

cording to formula [18] of £~ 12+KK2 and f~! —2

1+ K
We have, therefore,
-1 2K . :f{l—Kg 1 1-K2 2" 1 wﬁmﬂ
£ 1+K2_2“'+‘/ ! 1+K2"°+2n(1+K2 +2n+1 1+K2 }
and
2n 9n+l
-1 2 — S "‘::-—{]._I{9 ___1_— 1-'-1{g 1 2 }
ST ki b L zn(1+K2) +2n+1 1+K? '
- -1 2K® -1 2
Hence ' Kror ™= =7 g
.. ~— [1— K2 1 1 — K2, 2n+1
=2(“?)”+2V—1{m--'+m(ﬁ@) }
Hence the Neperian logarithms of K* are
5 27 1.
- —J=K 1 (1=K ”'_}
2in+ 2V =T\ 7R +ang oK)

Corollary. When i and ¢ are both =0, this expression reduces itself to
2n+1

1—K? 1 1—-K2
- 2{1+K" BT (m@) }
which is the tabular Neperian logarithm (see [6] ) of K2 Let it be designated
by 1K2. On comparing [25] and [26], it appears, by [9], that — ./ —11K¢ is
one of the values of f ! K2,

Hence we have the equation L
f(— &/ —118) = [27]

§ 5. To separate the real and imaginary parts of f =1 4.

¢ in its most general form = R + o/ —1S.—(See Lacroix “Traité,” &c.
Introd. 87.) .

On inspecting a circle whose radius is supposed to be =1, it will be
obvious that for all arcs whose magnitude lies between # and — #, the arc and
sine at any time are either both positive or both negative. Suppose therefore

such an arc to have for cosine the quantity —=: Vet then will its sine or

B8
R2+Sz—4/R2+Sg

RF S¥
/1=

, as long as the arc and S have the same sign.



INACCURACY OF SOME LOGARITHMIC FORMULZ. 179

Now let cos ~* (characterized, to distinguish it from any of the

__R_
VRIS
-1

V R2 + S2 . .
positive or negative semicircle, according as S is positive or negative, whose

other values of cos ) be the arc, when radius = 1, in the first

cosine = ———gs; (as TR always lles between 1 and — 1, it is evident
that such an arc cds ~! I?TQIE?S-? is always assignable) then, by what has been
. 1 e s S
premised, will its sine = TR
Hence ‘
.1 R _R4+ V=18
fcos

VR +S T YR+ S
Again, let 1 4/ R* 1 S* designate the tabular Neperian logarithm of 4/ R* + S*;

f(— Vo1V RE )= VR + S

Hence
\  —1 R 7 N2 L Q@) - 0
fcos Mvm.f(—v—lla/R + S°) or (see [11])
R — —_— —_—
O _1—-——._——_—___————_——_ — 2 ) — —1
f (cos VTS V—=l1llVvR+S)=R+ v S

Hence, by [9],

e _ R
fT'R+ v IS or f 0=2im+cos

VRS
in which expression the real and imaginary parts of f 7" ¢ are separated.

V=il TETS [28]

Corollary. 1 may remark that from the ambiguity of d cos ~'4, which
= F /1 — 2d 4, the arcs in odd positive and even negative semicircles whose
cosines = 4, a quantity between 1 and — 1, will be found on development to
be represented by ‘

. 2,32,..2n—1)? ,2n+41
217!-{-1;——0... 1.3 2n )

T 1.2...2n.2n+1.

Similarly, the arcs in odd negative and even positive semicircles whose

cosines = 4, are represented by

R 12.8°...(2n— 1 ,2n+1
2in—g b vy ol

As
T 12.3%,..(2n — 1) ,2n+1

2 T 1.2...272.2n 4+ 1.
2A2
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is a value of cos ~' ¢, which is always less than = (it being recollected that ¢
is a quantity between 1 and — 1) it follows that the particular value of

-1 R . -1__ v
cos 7! —mr—s, which I denote by cos VTS

=S r=_ R _ 2.8, (2n—1)° R 2'n.+1} (29]
- V—S:é{? VR2+SQ... 102.0.2”.2”+1.(VR9+S3) ce

§ 6. In the equation 2 4+ v ~TB =y, to determine what real values may
possess, so that in each case a corresponding value of y may like-
wise be real.—[Note I.]

By [20],
y=f{(A+ ¥ IB)f 'z}
By [28]’ -1 . \ '_l xZ P —
fT =277 4 cos V?—V—-“Vﬁ
Hence

1

g/:f{(A + &/ =1B)(2im + cds ot vV =1l v?)}

or
f{A (2in+es ™ ) +Bly@+ v =1 [B(2im+o0s™ =) - Al «/?]}
or (see [11]).

x

t{ Aleim s =)+ Blv@ Lt { v T [B (2in + 07 ) - AlvE ] |
In this expression the factor
(v [B(2imtas™ 2) - Al vE]}

is always real, as is evident on developing by [7].
Hence, that some y may be real, the other factor, viz.

£{A (2in+ o0 ™' 5) 4 BI 7z

must also have some real value.
Hence (see [6] ) some one, at least, of the quantities

sin{ A (27 + 0 7' ) +Bly#

must = 0.
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Hence some value of sin ~'0 or i = must be to be found among

A (2im+ods™ ) + Bly@

Hence
im— A(inr +cos ™!
1 4/ 2* must = some quantity B

77) [30]

« is either positive or negative.

When @ is positive, cos ~* ;? =cds "' 1oro.

. . - X
When 2 is negative, cds ™' —= = cds

vV a?
Hence and from [30] it follows, that, for y as well as 2 to be real, » must
= one of those quantities whose tabular Neperian logarithms are
i—2iA
:._:B__»;r
or one of the negatives of those quantities whose tabular Neperian logarithms are
i—(2i+1)A
_._.—-—-—B——-—.—_-W
Hence # must = one of the quantities

. —i—1A -

| t{(i-v=T5 0 ) [31]

a formula, which, as appears by [11] and [27], comprises all the quantities that
respectively fulfil the conditions above stated.

'~ 1lor+ =

Corollary. On retracing our steps under the guidance of formula [31], it
would not be difficult to prove, among others, the following theorems, viz.

1st. When B = 0, for # to be negative and y real, A must be a rational
fraction with, in its lowest terms, an odd denominator.

2nd. When B = 0, and A is a rational fraction, which, in its lowest terms,
= LZ?, the number of real values of y that can correspond with a real @ will
be one or two, according as n is odd or even.

3rd. In general, when A is irrational, y can have only one real value con-
sistently with the simultaneous reality of an .

4th. When B is not = 0 and A is rational, y, in every case when it has one
real value corresponding to a real », has an infinite number.
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§ 7. On the orders and ranks of logarithms.

In[22]lety =R+ /—1Sanda=A + /= 1B;
then, by [28], will

- R
f"ly 2.Z’7r+C(‘)S lm““‘/—ll'\/R2+Sg [ ]
= 32
Foi, 00 % - N
“ 277 + ¢Os ;W—V_IIVAQ_FB?

When I have thus separated respectively the real and imaginary parts of the
numerator and denominator of [22], upon assigning particular values, * and %,
to 4 and ¢ in [32], I would indicate the order of a logarithm by the ¥ in the
denominator, and the rank it bears in that order by the % in the numerator; e. g.
I would say of the resulting « that, in the base a, it was the ith logarithm of y

of the ith order. . . ..
By [20], all the values of (A + J —1 B)” are comprised in the formula

tdof=1 A+ v B)}
or, (see [28] )

- A
f{x (2i7r+c<‘)s 17ﬁ—V—llVA‘*+B2)}

When, in this formula, ¢ assumes the particular value 2, I would denominate

- A e
f{.z’ (2i7r+c6s lvﬁ-—-—B—g-— 4/—114/A2+Bg)}

the 1th value of (A 4 ./ — 1 B)*

When, with respect to the base a, # is any logarithm of ¥ of the ith order, the
ith value of ¢* will = .

Employing the mode of expression above explained, I conceive that the chief
novelty of my system consists, not in showing that any assigned quantity,
relatively to a given base, has an infinite number of logarithms (which was
known before), but in showing that it has an infinite number of orders of
logarithms, and an infinite number of logarithms in each order.

Thus, all the Neperian logarithms of 1 have been hitherto supposed to be
comprised in the formula

N —=12ix
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whereas [32], on supposing R = 1, S =0, A = ¢, and B = 0, gives the more

general formula
2iw
gin— =1 [NoteK]

A remark necessary to prevent misconception is, that, in certain cases, a
logarithm may re-appear at intervals with different ranks in different orders.

NOTES.

Nore A.—My knowledge of these researches is derived not from the original Essays, but from
abstracts of their contents given in the Dublin Philosophical Journal, vol. ii. No. 3. p. 60. and No. 4.
p. 219.

My occupations have prevented me from examining whether mathematicians have directed further
attention to the extended application of the principles there promulged. In October 1826 I had
obtained the results presented in this paper.

Note B.—As long as the development [18]is not illusory, its values will be independent of the
value assigned at any time to the arbitrary constant ¢c. [Vide infra, Notes E and K.]

Norr C.—It is important to observe, that notwithstanding the infinite number of values of f ~ ¥ ¢,
yet where x is a real and rational quantity, y or f(x f ~ ! @) will, from the form of the function, have
periodical recurrences of the same values.

Note D.—When this expression is required to assume particular values, there needs be no corre-
spondence between the numerator and the denominator; for, y being supposed for a moment given,
2, by the definition of “‘logarithrh of 3,” may be any such quantity that y may be found among the
values of a® or (see [20] ) f (z £ ' a). Every value whatever of formula [22] satisfies this criterion

¢ —1

f . . . . .
for, let ——5 Y be any one of its values, in which the numerator and denominator are wholly inde-
f a p—1 ¥
v —1 f'—- 1 y

_— -1 .
pendent, then will LIS 4 ( f a) possess among its values

-1
£ a

f(i“:;y f_la) —..:ff_]y:y

Nore E.—As this example seems to lead to the general consideration of diverging and illusory
series, I shall endeavour to state succinctly my impressions respecting that important and delicate
subject. _

Instances frequently occur to the analyst of developments, in which, upon substituting a particular
value for the variable in each, there is no approximation to numerical identity between the several
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resulting series calculated to any number of terms, and the respective functions which they ought to
represent. .

Such developments have been said to be analytically accurate, notwithstanding the numerical dis-
crepancy in each particular case. “They serve,” it is argued, “to represent their functions, and by
performing algebraical operations upon them, correct conclusions are attained.”

Now, it appeared to me that there was some confusion of expression in asserting universally that
equations were analytically true, which, numerically considered, were, in particular instances, palpably
false. 1In ascertaining the correctness of the conclusions deduced from them, and relied upon as
evidence of the truth of their premises, I observed that the formerly rejected test of numerical identity
was often appealed to. Nay further, I was induced to ascribe, in the absence of other visible causes,
to the intervention of such equations the limited results which were occasionally elicited where pre-
vious calculations would lead to the expectation of general ones, and even the conclusions absolutely
and unlimitedly erroneous to which the mathematician was sometimes conducted by apparently un-
deviating paths. '

To account for these difficulties, upon reverting to first principles, it will be found that the
theorems of development (such as Tavrow’s, MacLaurin’s, &c.) are based upon hypothetic rea-
soning to this effect, viz. “if the function be developable according to certain powers, it will be deve-
loped in a certain form,” which is assigned. Now imagine a function of =, for instance, which for
those values only of x that lie between certain limits, is capable of being developed according to the
ascending integral powers of x, such a function, it would seem, evolved by MAcLAURIN’S theorem,
would afford an expansion which, when x transgresses those limits, would be illusory.

In the treatment of developments thus partially true, when more than one of them come in ques-
tion, the extent of their compatibility should, in my opinion, be most carefully attended to ; for, if two
such developments of a-function were equated, whereof the one was applicable for values of the
variable which would render the other illusory, the consequences derived from such equation might,
in proportion to the extent of those values, be partly or entirely false. An instance of the limitation
introduced by the caution here recommended is to be found in Appendix § 4.

To learn how far a development was applicable, it might be useful to ascertain the error com-
mitted upon calculating n terms of the series, and, then supposing # an infinitely great integer, to
observe if there were any values of the variable which would prevent the expression for the error
from vanishing,.

Should these reflections appear dubious or unfounded, I wish it to be fully understood that they
may, in that case, be considered as operating on my results only, at most, by way of superfluous
caution. Thus, if ¢ be deemed unnecessary to the universal accuracy of the series [18], it has, at all
events, the merit of ensuring its convergence.

Since writing the above, I have been informed by Professor Hamirron that M. Posson has lately
given examples of the danger of using diverging series, even when the final development to which
they conduct is converging.

Note F.—This seems to prove that the logarithms of negative numbers are not in general the
same as those of their positives, as JEaN Berwouirrir and D’Avemserr thought. (See Lacrorx,
“Traité,” &c. Introd. 82.) Hence also conversely by easy inference it seems to follow, that negative
numbers have occasionally even real logarithms, contrary to the opinion that they have none whatever,
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maintained in the Encyclopedia Metropolitana, article Algebra, 284, Indeed, when — 2 is admitted to

be one of the values of 4%, the extension of the notion logarithm ” must be greatly abridged to deny
that, relatively to the base 4, £ is a logarithm of — 2,

Nore G.—From this theorem it does not follow that £ 162 = 2 £ ! §; an expression that has only
half as many values as £~ 1§ + £~ 16, which admits the addition of any one value of £~ 8 to any
other.

This instance is adapted to give notice of a very insidious species of fallacy, whose intrusion, in
reasoning on subjects like the present, should be guarded against with vigilance.

Nore H.—As 2 iw comprises exactly the same values as 2(i — #)#, and serves as well to show
that the integer in the numerator of [267] may be chosen without reference to that in the denominator,
it is preferred for briefness and concinnity in a general formula.

Nore I.—The solution of this problem assists in constructing the figure whose equation is
A+ A/—-1B Y.

M. Vincex? has inserted in the commencement of the 15th volume of the * Annales de Mathé-
matiques,” &c. published at Nismes in 1824 and 1825, and edited by M. J. D. GErconNE, an in-
genious paper on the construction of some discontinuous transcendental curves. His paper is entitled
- ¢ Considerations nouvelles sur la nature des courbes logarithmiques et exponentielles. Par M. Vix-
cent, Professeur de Mathématiques au Collége Royal de Reims, ancien éléve de I'école normale.”
His general principles appear to me to be correct; but, in my opinion, he has occasionally fallen into
error. For instance, he seems to take it for granted when « is positive, that whatever value of a® be
considered, da” =la a” d 2; whereas, when the i value of «” is considered (see Appendix § 7.)
da® = (V' =12i7% +la)a®da.

To obviate some objections to my general theory, I may here observe incidentally that M. StEIN,
who has occasionally written on the subject of logarithms in the same journal, would introduce a very
confused and inconvenient notation by supposing a” to vary its signification accordintr to the form in
which the value of « is expressed—by supposing, for instance, that, while a! = a a 7 would = (aﬁ)"'

V2 1
or + a. Hence, by the same analogy a V2 would = a. 1 “/2. According to the usual interpreta-
A2
tion of a”, which I have adopted, and by which it is identical with f(z f ~! a), @', a® and a V2 have
all the same signification.

The following definition of a”, derived from the characteristic property which led to the extension
of the exponential notation beyond integral exponents, has been suggested to me by my friend Mr.
Hawmirron, Royal Astronomer of Ireland :

“q” comprises every successive function ¢z of x, which, independently of x and y, satisfies the
conditions gz gy = ¢ (x + y) ¢l =a.”

From this definition does not follow, in all its generality, the equation a” ¥ = a® T ¥, for the pro-
duct of the ¢t® value of « (whlch I would designate by @) multiplied by the z“‘ value of a¥ is not
necessarlly among the values of a™ * ¥ ; a legitimate consequence of the definition of a” is the equa-
tiona;” a,Y = a," Y.
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Nore K.—To exemplify the agreement with which the positions we have established lead by dif-
ferent processes to the same conclusion, it may be mentioned that the same general formula for the
Neperian logarithms of 1 would be obtained from [23], on supposingy =1,c=0,a =eandc= /' —1,
or, more concisely, from [26], on supposing K* = )

If, however, in [23] we had selected other values for ¢ and ¢, consistently with the convergence of
the numerator and denominator; e. g. if ¢ were supposed =2im and ¢ =227 + V=1, upon
making all the necessary substitutions; formula [28] would produce

2im—2im

2im—2im— =1

2im
Now though this formula has precisely the same values as é-f-——:——_—,=l, yet their arrangement is
im— & —

different. In general, therefore, [23], from its liability to alter the arrangement of its values by the
alterations imparted to ¢ and ¢, cannot be resorted to for the definitive computation of the orders and
ranks of logarithms, It was from the necessity of establishing a standard (whose only requisite is
that, when once determined, it should not be varied,) from which to commence such computation, that,
in Appendix, § 5, I fixed arbitrarily (the consideration of superior simplicity abstracted) on that value of

R . N R
cos ™! Wi which I denote by cos ~ 4/ ] although any other defined value cds ~! VR
which would satisfy the equation
fegs =1 R _ R+ =18

VRS RS
would have answered the same purpose.
When R is negative and S =0, according as we decide to consider 0 positive or negative,

cos ™1 71{;1&*—-—1_—33 will = either + 7 or — 7; in every other case the value of cos ~? VRTR_:_S—* will be
definitively fixed by [29].
i 3 a designate the 0" Neperian logarithm of a of the 0" order, [32] may be expressed as follows :
4/ 12ix + 1 ly

which may be compared with (3) and (4).



